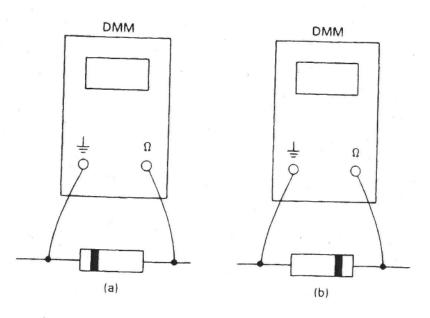
16.311 Electronics Lab. I

Experiment 2

Junction - Diode Characteristics

Objective:


- 1. Become familiar with the basic properties of junction diodes.
- 2. Measure and plot the forward and reverse-biases I.V. characteristics of a diode

Materials Needed:

- 1. One Signal Diode 1N914
- 2. One Rectifier Diode 1N4004.
- 3. One Zenner Diode 1N751 (5.1volts) Note:DMM Digital Multimeter.
- 4. Resistors; 330 Ohm, 1 meg.Ohm.

Procedure:

- 1. Diode measurement with a DMM ,1N914 (signal diode)
 - a. Initially your DMM should be set to it's highest range.
 - b. Measure it's forward resistance Rf as shown in fig. 1a
 - c. Measure the reverse resistance Rr as shown in fig. 1b
 - d. Place the DMM on the Diode range, repeat steps b & c
 - e. Record the data in your notebook.
- 2. Diode measurement with a DMM ,1N4004 rectifier diode)
 - a. Initially your DMM should be set to it's highest range.
 - b. Measure it's forward resistance Rf as shown in fig. 1a
 - c. Measure the reverse resistance Rr as shown in fig. 1b
 - d. Place the DMM on the Diode range, repeat steps b & c
 - e. Record the data in your notebook.
- 3. Diode measurement with a DMM ,1N751 (zenner diode)
 - a. Initially your DMM should be set to it's highest range.
 - b. Measure it's forward resistance Rf as shown in fig. 1a
 - c. Measure the reverse resistance Rr as shown in fig. 1b
 - d. Place the DMM on the Diode range, repeat steps b & c
 - e. Record the data in your notebook.

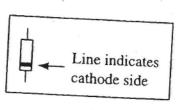
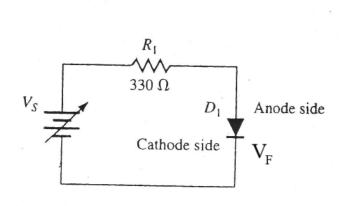



Figure 1

4. Diode Conduction - The Forward Drop, 1N914

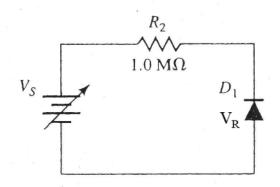
- a.. Construct the forward-bias circuit shown in fig. 2, set P.S. to zero volts
- b. Monitor the forward voltage drop V_f across the diode, slowly increase V_s(P.S.) to establish 0.45 Volts across the diode.
- c. Measure the voltage across the resistor R1 and record it in data table
- d. The diode forward current Is can be found by applying Ohm's Law Compute and enter in the table.
- e. Repeat steps c and d for each voltage listed in table.

V _F (measured)	V_{R1} (measured)	$I_{\rm F}$ (computed)
0.45 V		
0.50 V	ŕ	
0.55 V		
0.60 V		
0.65 V		
0.70 V		
0.75 V		

Figure 2

Data Table

5. **Diode Conduction** – The Forward Drop, 1N4004.


- a. Construct the forward-bias circuit shown in fig. 2, set P.S. to zero volts
- Monitor the forward voltage drop V_f across the diode, slowly increase V_s (P.S.) to establish 0.45 Volts across the diode.
- c. Measure the voltage across the resistor R1 and record it in data table
- d. The diode forward current Is can be found by applying Ohm's Law Compute and enter in the table.
- e. Repeat steps c and d for each voltage listed in table.

6. **Diode Conduction** – The Forward Drop, 1N751

- a.. Construct the forward-bias circuit shown in fig. 2, set P.S. to zero volts
- b. Monitor the forward voltage drop V_f across the diode, slowly increase V_s (P.S.) to establish 0.45 Volts across the diode.
- c. Measure the voltage across the resistor R1 and record it in data table
- d. The diode forward current Is can be found by applying Ohm's Law Compute and enter in the table.
- e. Repeat steps c and d for each voltage listed in table.

7. Reverse-Bias Current and Break-down Voltage

- a. Connect a reverse-bias circuit as shown below
- b. Set the power supply to voltages as in the table below.
- c. Measure and record the voltage across R2, compute the reverse current.
- d. Note that the Fluke meter has input resistance of 10 meg. Ohms (adjust your calculations to allow for meter loading)
- e. Repeat for each diode and record the results.

Vs	$V_{\rm R}$ (measured)	V_{R2} (measured)	$I_{\rm R}$ (computed)
5V	N 00		
10V		v .	
15V			
20V			
•			